DSP Algorithms for RF Systems

Buy the Book!

DSP for Beginners: Simple Explanations for Complex Numbers! The second edition includes a new chapter on complex sinusoids.

Designing FIR Filter Gain
February 23, 2022

Table of Contents

Introduction

This blog describes how to design the FIR filter gain through normalization and then applying a gain. Applying filter gain may be desirable to setting the proper amplitude level or power level needed for follow on processing based on threshold values or other reference levels.

Filter design methods may create different gains for the resulting filters such as with Remez, using windowed sinc functions or as specially designed pulse shaping filters. Normalizing the magnitude response of an FIR filter makes the gain 1, or 0 dB, at a desired frequency. A gain factor can then be applied by scaling each of the filter weights.

More blogs on filter design:

Normalizing FIR Filter Gain

Normalizing a filter to unit gain at some frequency \omega_g is as simple as dividing the filter weights by the magnitude of the discrete-time Fourier transform (DTFT) at \omega_g

(1)   \begin{equation*}h_{norm}[n] = \frac{h[n]}{\left|\sum_{k} h[k]e^{-j\omega_g k}\right|}\end{equation*}

where h_{norm}[n] is the normalized filter and h[n] is the unnormalized filter. To see why this is the case, start by taking the DTFT of h[k] which is

(2)   \begin{equation*}H\left(e^{j\omega}\right) = \sum_{k} h[k]e^{-j\omega k}.\end{equation*}

The unnormalized filter gain at \omega_g is the magnitude of the frequency response

(3)   \begin{equation*}\left| H\left( e^{j\omega} \right) \right|_{\omega = \omega_g} = \left| \sum_{k} h[k]e^{-j \omega_g k} \right|\end{split}\end{equation*}

A filter gain of 1 at \omega_g is achieved by scaling the frequency response (2) by the unnormalized filter gain at \omega_g (3). The frequency response of the normalized filter is therefore

(4)   \begin{equation*}\begin{split}H_{norm} \left( e^{j\omega} \right) & = \frac{ H \left( e^{j\omega} \right) }{ \left| H \left( e^{j\omega} \right) \right|_{\omega=\omega_g} } \\& = \frac{ H \left( e^{j\omega} \right) } { \left| \sum_{k} h[k] e^{-j\omega_g k} \right| }.\end{split}\end{equation*}

The time-domain filter weights are the inverse DTFT of (4)

(5)   \begin{equation*}\mathcal{F}^{-1} \left\{ H_{norm} \left( e^{j\omega} \right) \right\} = \frac{ \mathcal{F}^{-1} \left\{ H \left( e^{j\omega} \right) \right\} }{ \left| \sum_{k} h[k]e^{-j\omega_g k} \right| }\end{equation*}

which is the same as (1)

(6)   \begin{equation*}h_{norm}[n] = \frac{ h[n] }{ \left| \sum_{k} h[k]e^{-j\omega_g k} \right| }.\end{equation*}

Scaling FIR Filter Gain

The filter gain in dB is measured by the magnitude-squared when working in the logarithmic domain

(7)   \begin{equation*}10\text{log}_{10} \left( \left| X \left( e^{j\omega} \right) \right|^2 \right) = 20\text{log}_{10} \left( \left| X\left( e^{j\omega} \right) \right| \right).\end{equation*}

The linear gain G and logarithmic gain G_{dB} are related through

(8)   \begin{equation*}\begin{split}G_{dB} & = 10\text{log}_{10}\left( G^2 \right) \\& = 20\text{log}_{10} \left( G \right)\end{split}\end{equation*}

or equivalently

(9)   \begin{equation*}\begin{split}G & = 10^{G_{dB}/20}\end{split}\end{equation*}

where G > 0. The scaled filter weights h_{g}[n] are therefore

(10)   \begin{equation*}\begin{split}h_{g}[n] & = G \cdot h_{norm}[n] \\& = \frac{G \cdot h[n]}{\left| \sum_{k} h[k]e^{-j\omega_{g} k} \right| }.\end{split}\end{equation*}

Examples for Designing FIR Filter Gain

Low Pass Filter Example

Figure 1 gives the impulse and frequency responses for an unnormalized sinc with 31 filter weights with a Hamming window applied. Figure 2 gives the responses after the filter is normalized to 0 dB gain at \omega = 0 using (6) and Figure 3 gives the responses after scaling the same filter to have a gain of 6 dB at \omega = 0 using (10).

Figure 1: The impulse response and frequency response of the LPF before the FIR filter gain is normalized.
Figure 1: The impulse response and frequency response of the LPF before the FIR filter gain is normalized.
Figure 2: The impulse response and frequency response of the LPF after the FIR filter gain is normalized to 0 dB at omega = 0.
Figure 2: The impulse response and frequency response of the LPF after the FIR filter gain is normalized to 0 dB at omega = 0.
Figure 3: The impulse response and frequency response of the LPF after the FIR filter gain is set to 6 dB at omega = 0.
Figure 3: The impulse response and frequency response of the LPF after the FIR filter gain is set to 6 dB at omega = 0.
Band Pass Filter Example

Figure 4 gives the impulse and frequency responses for an unnormalized sinc with 31 filter weights with a Hamming window applied and then frequency shifted to band-pass. Figure 5 gives the responses after the filter is normalized to 0 dB gain at \omega = \pi/2, which is equivalent to f/f_s = 0.25, using (6) and Figure 6 gives the responses after scaling the same filter to have a gain of -3 dB using(10).

Figure 4: The impulse response and frequency response of the LPF before the FIR filter gain is normalized.
Figure 4: The impulse response and frequency response of the LPF before the FIR filter gain is normalized.
Figure 5: The impulse response and frequency response of the BPF after the FIR filter gain is normalized to 0 dB.
Figure 5: The impulse response and frequency response of the BPF after the FIR filter gain is normalized to 0 dB.
Figure 6: The impulse response and frequency response of the BPF after the FIR filter gain is set to -3 dB.
Figure 6: The impulse response and frequency response of the BPF after the FIR filter gain is set to -3 dB.

Conclusion

The gain of an FIR filter can be designed by first normalizing the weights to unit gain at frequency \omega_g and then scaling each of the weights by the desired linear gain. The filter normalization is calculated by diving the filter weights by the magnitude of the frequency response at \omega_g.

More blogs on filter design:

Leave a Reply

For everything there is a season, and a time for every matter under heaven. A time to cast away stones, and a time to gather stones together. A time to embrace, and a time to refrain from embracing. Ecclesiastes 3:1,5
The earth was without form and void, and darkness was over the face of the deep. And the Spirit of God was hovering over the face of the waters. Genesis 1:2
Behold, I am toward God as you are; I too was pinched off from a piece of clay. Job 33:6
Enter His gates with thanksgiving, and His courts with praise! Give thanks to Him; bless His name! Psalm 100:4
Lift up your hands to the holy place and bless the Lord! Psalm 134:2
Blessed is the man who trusts in the Lord, whose trust is the Lord. He is like a tree planted by water, that sends out its roots by the stream, and does not fear when heat comes, for its leaves remain green, and is not anxious in the year of drought, for it does not cease to bear fruit. Jeremiah 17:7-8
He said to him, “You shall love the Lord your God with all your heart and with all your soul and with all your mind. This is the great and first commandment. And a second is like it: You shall love your neighbor as yourself. On these two commandments depend all the Law and the Prophets.” Matthew 22:37-39
Then He said to me, “Prophesy over these bones, and say to them, O dry bones, hear the word of the Lord. Thus says the Lord God to these bones: Behold, I will cause breath to enter you, and you shall live." Ezekiel 37:4-5
Riches do not profit in the day of wrath, but righteousness delivers from death. Proverbs 11:4
The angel of the Lord appeared to him in a flame of fire out of the midst of a bush. He looked, and behold, the bush was burning, yet it was not consumed. And Moses said, “I will turn aside to see this great sight, why the bush is not burned.” When the Lord saw that he turned aside to see, God called to him out of the bush, “Moses, Moses!” And he said, “Here I am.” Exodus 3:2-3
Daniel answered and said: “Blessed be the name of God forever and ever, to whom belong wisdom and might. He changes times and seasons; He removes kings and sets up kings; He gives wisdom to the wise and knowledge to those who have understanding." Daniel 2:20-21
Now the Lord is the Spirit, and where the Spirit of the Lord is, there is freedom. 2 Corinthians 3:17
Previous slide
Next slide

This website participates in the Amazon Associates program. As an Amazon Associate I earn from qualifying purchases.

© 2021-2024 Wave Walker DSP